Exercise 8

Find the series solution for the following inhomogeneous second order ODEs:

$$
u^{\prime \prime}-x^{2} u=\ln (1-x)
$$

Solution

Because $x=0$ is an ordinary point, the series solution of this differential equation will be of the form,

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

To determine the coefficients, a_{n}, we will have to plug the form into the ODE. Before we can do so, though, we must write expressions for u^{\prime} and $u^{\prime \prime}$.

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \rightarrow \quad u^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \quad \rightarrow \quad u^{\prime \prime}(x)=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Also, the Taylor series of $\ln (1-x)$ about $x=0$ is

$$
\ln (1-x)=-\int \frac{1}{1-x} d x=-\int \sum_{n=0}^{\infty} x^{n} d x=-\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1} .
$$

Now we substitute these series into the ODE.

$$
\begin{aligned}
u^{\prime \prime}-x^{2} u & =\ln (1-x) \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-x^{2} \sum_{n=0}^{\infty} a_{n} x^{n} & =-\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1} \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+2} & =-\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}
\end{aligned}
$$

The first series on the left is zero for $n=0$ and $n=1$, so we can start the sum from $n=2$.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+2}=-\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}
$$

Since we want to combine the series on the left, we want the first series to start from $n=0$. We can start the first at $n=0$ as long as we replace n with $n+2$.

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n+2}=-\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}
$$

To get x^{n+2} in the first series, write out the first two terms and change n to $n+2$. For the series on the right side, write out the first term and change n to $n+1$.

$$
2 a_{2}+6 a_{3} x+\sum_{n=0}^{\infty}(n+4)(n+3) a_{n+4} x^{n+2}-\sum_{n=0}^{\infty} a_{n} x^{n+2}=-x-\sum_{n=0}^{\infty} \frac{1}{n+2} x^{n+2}
$$

The point of doing this is so that x^{n+2} is present in each series so we can combine them.

$$
2 a_{2}+6 a_{3} x+\sum_{n=0}^{\infty}\left[(n+4)(n+3) a_{n+4} x^{n+2}-a_{n} x^{n+2}\right]=-x-\sum_{n=0}^{\infty} \frac{1}{n+2} x^{n+2}
$$

Factor the left side.

$$
2 a_{2}+6 a_{3} x+\sum_{n=0}^{\infty}\left[(n+4)(n+3) a_{n+4}-a_{n}\right] x^{n+2}=-x-\sum_{n=0}^{\infty} \frac{1}{n+2} x^{n+2}
$$

Now we match coefficients on both sides.

$$
\begin{aligned}
& 2 a_{2}=0 \\
& 6 a_{3}=-1 \\
& (n+4)(n+3) a_{n+4}-a_{n}=-\frac{1}{n+2}
\end{aligned}
$$

Now that we know the recurrence relations, we can determine a_{n}.

$$
\begin{array}{rrll}
& 2 a_{2}=0 & \rightarrow & a_{2}=0 \\
& 6 a_{3}=-1 & \rightarrow & a_{3}=-\frac{1}{6} \\
n=0: & 12 a_{4}-a_{0}=-\frac{1}{2} & \rightarrow & a_{4}=\frac{1}{24}\left(-1+2 a_{0}\right) \\
n=1: & 20 a_{5}-a_{1}=-\frac{1}{3} & \rightarrow & a_{5}=\frac{1}{60}\left(-1+3 a_{1}\right) \\
n=2: & 30 a_{6}-a_{2}=-\frac{1}{4} & \rightarrow & a_{6}=-\frac{1}{120} \\
n=3: & 42 a_{7}-a_{3}=-\frac{1}{5} & \rightarrow & a_{7}=-\frac{11}{1260} \\
n=4: & 56 a_{8}-a_{4}=-\frac{1}{6} & \rightarrow & a_{8}=\frac{1}{1344}\left(-5+2 a_{0}\right) \\
n=5: & 72 a_{9}-a_{5}=-\frac{1}{7} & \rightarrow & a_{9}=\frac{1}{30240}\left(-67+21 a_{1}\right)
\end{array}
$$

Therefore,

$$
\begin{aligned}
u(x)=a_{0}\left(1+\frac{1}{12} x^{4}+\right. & \left.\frac{1}{672} x^{8}+\cdots\right)+a_{1}\left(x+\frac{1}{20} x^{5}+\frac{1}{1440} x^{9}+\cdots\right) \\
& -\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{60} x^{5}-\frac{1}{120} x^{6}-\frac{11}{1260} x^{7}-\frac{5}{1344} x^{8}-\frac{67}{30240} x^{9}-\cdots,
\end{aligned}
$$

where a_{0} and a_{1} are arbitrary constants.

